FEDERATIA CULTIVATORILOR DE SFECLA DE ZAHAR DIN ROMANIA


From Farm To Fork!

PATRONATUL ZAHARULUI

DIN ROMANIA

June 8, 2021


Categorii:

VIITORUL ALBINELOR SUNA BINE

Viitorul albinelor suna bine – particule de enzime de dimensiunea grauncioarelor de polen confera albinelor imunitate la insecticide

Publicat de Redactia Sanatatea Plantelor pe iun. 07, 2021  

 

Albinele joaca un rol critic in polenizarea multor plante pe care le consuma oamenii si, prin urmare, sunt cheia securitatii alimentare, dar populatiile continua sa scada rapid in intreaga lume. La asta contribuie o serie de factori, inclusiv pierderea habitatului si seceta, dar o mica particula ingerabila dezvoltata la Universitatea Cornell urmareste detoxifierea insecticidelor mortale inainte de a putea face rau acestor creaturi importante.

Insecticidele obisnuite, cum ar fi neonicotinoidele, pe care UE le-a interzis in 2016, sunt utilizate pentru a proteja culturile de insectele daunatoare, dar adesea si albinele sunt afectate. Aceste substante toxice interfereaza cu moleculele care ajuta albinele sa produca energie, le pot perturba ciclurile de somn si le pot lasa imobile si infometate.

Noua tehnologie este descrisa ca un antidot pentru aceste tipuri de substante chimice, cercetatorii concentrandu-se mai intai asupra insecticidelor pe baza de organofosfati, care reprezinta aproximativ o treime din piata. Oamenii de stiinta de la Universitatea Cornell au dezvoltat o microparticula de dimensiunea polenului, cu enzime care descompun si detoxifica complet aceste insecticide inainte ca albina sa le absoarba.

Particulele, care pot fi amestecate in hrana albinelor sau in apa cu zahar si date albinelor, au o pelicula de protectie care protejeaza enzimele in timp ce trec prin stomacul acestora, care este acid si altfel le-ar descompune. In schimb, calatoresc in siguranta pana in intestinul mediu, unde are loc digestia, iar enzimele isi pot face efectul, descompunand organofosfatii.

Acest lucru a fost demonstrat mai intai prin experimente in vitro si apoi pe albine vii din laborator, unde insectele au fost hranite atat cu un pesticid organofosfat, cat si cu particule, in timp ce unui alt grup de control i s-a administrat doar pesticidul organofosfat. Oamenii de stiinta au observat o rata de supravietuire de 100% la albinele hranite cu particule, in timp ce toate albinele martor neprotejate au murit in urmatoarele zile.

Studiul a fost publicat in revista Nature Food. Sursa: Universitatea Cornell

https://www.sanatateaplantelor.ro/viitorul-albinelor-suna-bine-particule-de-enzime-de-dimensiunea-grauncioarelor-de-polen-confera-albinelor-imunitate-la-insecticide/

                                  *  *  *

Volume 2 Issue 5, May 2021

Pollinator protection

Insecticide exposure is a key global driver of pollinator declines. Organophosphates, which account for more than a third of insecticide sales worldwide are highly toxic to pollinators. Utilizing the capability of phosphotriesterase enzymes to hydrolase linkages in organophosphates, it may be possible to develop in vivo detoxification systems for managed pollinators. Microcolonies of bumblebees fed pollen patties contaminated with malathion, the widely applied organophosphate pesticide, demonstrated 100% survival when also fed with phosphotriesterase-encapsulated pollen-inspired microparticles. Pollen-mimicking, enzyme-loaded microparticles may have potential to be deployed at low cost and large scale, incorporated into supplemental feeds, to detoxify organophosphate insecticides in stored nectar and pollen.

Image: Stephen McDaniel, McDaniel Photography. Cover Design: Tulsi Voralia.

Pollen-inspired enzymatic microparticles to reduce organophosphate toxicity in managed pollinators , Published: 20 May 2021

Jing Chen, James Webb, Kaavian Shariati, Shengbo Guo, Jin-Kim Montclare, Scott McArt & Minglin Ma 

Nature Food volume 2, pages 339–347 (2021Cite this article

Received15 October 2020 ,  Accepted 20 April 2021, Published 20 May 2021, Issue DateMay 2021

DOI  https://doi.org/10.1038/s43016-021-00282-0

 Abstract

Pollinators support the production of the leading food crops worldwide. Organophosphates are a heavily used group of insecticides that pollinators can be exposed to, especially during crop pollination. Exposure to lethal or sublethal doses can impair fitness of wild and managed bees, risking pollination quality and food security. Here we report a low-cost, scalable in vivo detoxification strategy for organophosphate insecticides involving encapsulation of phosphotriesterase (OPT) in pollen-inspired microparticles (PIMs). We developed uniform and consumable PIMs capable of loading OPT at 90% efficiency and protecting OPT from degradation in the pH of a bee gut. Microcolonies of Bombus impatiens fed malathion-contaminated pollen patties demonstrated 100% survival when fed OPT−PIMs but 0% survival with OPT alone, or with plain sucrose within five and four days, respectively. Thus, the detrimental effects of malathion were eliminated when bees consumed OPT−PIMs. This design presents a versatile treatment that can be integrated into supplemental feeds such as pollen patties or dietary syrup for managed pollinators to reduce risk of organophosphate insecticides.

https://www.nature.com/articles/s43016-021-00282-0

References

  1. Abernethy, V. D. Nature’s services: societal dependence on natural ecosystems. Popul. Environ. 20, 277–278 (1999).

Google Scholar 

  1. Bartomeus, I. et al. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ 2, e328 (2014).

PubMed  PubMed Central  Google Scholar 

  1. Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274, 303–313 (2007).

PubMed  Google Scholar 

  1. Kleijn, D. et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 6, 7414 (2015).

ADS  PubMed  PubMed Central  Google Scholar 

  1. Reilly, J. R. et al. Crop production in the USA is frequently limited by a lack of pollinators. Proc. R. Soc. B 287, 20200922 (2020).

CAS  PubMed  Google Scholar 

  1. Croft, B. A. Arthropod Biological Control Agents and Pesticides (Wiley, 1990).

 

  1. Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 6229 (2015).

Google Scholar 

  1. Rissato, S. R., Galhiane, M. S., de Almeida, M. V., Gerenutti, M. & Apon, B. M. Multiresidue determination of pesticides in honey samples by gas chromatography–mass spectrometry and application in environmental contamination. Food Chem. 101, 1719–1726 (2007).

CAS  Google Scholar 

  1. Ghini, S. et al. Occurrence and distribution of pesticides in the province of Bologna, Italy, using honeybees as bioindicators. Arch. Environ. Contam. Toxicol. 47, 479–488 (2004).

CAS  PubMed  Google Scholar 

  1. Yao, J., Zhu, Y. C., Adamczyk, J. & Luttrell, R. Influences of acephate and mixtures with other commonly used pesticides on honey bee (Apis mellifera) survival and detoxification enzyme activities. Comp. Biochem. Physiol. C 209, 9–17 (2018).

CAS  Google Scholar 

  1. Sanchez-Bayo, F. & Goka, K. Pesticide residues and bees—a risk assessment. PLoS ONE 9, e94482 (2014).

ADS  PubMed  PubMed Central  Google Scholar 

  1. Peter, J. V., Sudarsan, T. I. & Moran, J. L. Clinical features of organophosphate poisoning: a review of different classification systems and approaches. Indian J. Crit. Care Med. 18, 735–745 (2014).

PubMed  PubMed Central  Google Scholar 

  1. Fukuto, T. R. Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health Perspect. 87, 245–254 (1990).

CAS  PubMed  PubMed Central  Google Scholar 

  1. Lerro, C. C. et al. Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the agricultural health study. Occup. Environ. Med. 72, 736–744 (2015).

PubMed  PubMed Central  Google Scholar 

  1. Rodriguez, O. P., Muth, G. W., Berkman, C. E., Kim, K. & Thompson, C. M. Inhibition of various cholinesterases with the enantiomers of malaoxon. Bull. Environ. Contam. Toxicol. 58, 171–176 (1997).

CAS  PubMed  Google Scholar 

  1. Tomlin, C. The Insecticide Manual: A World Compendium (BCPC, 2009).
  2. Pinjari, A. B., Pandey, J. P., Kamireddy, S. & Siddavattam, D. Expression and subcellular localization of organophosphate hydrolase in acephate-degrading Pseudomonas sp strain Ind01 and its use as a potential biocatalyst for elimination of organophosphate insecticides. Lett. Appl. Microbiol. 57, 63–68 (2013).

CAS  PubMed  Google Scholar 

  1. Zheng, Y., Lan, W., Qiao, C., Mulchandani, A. & Chen, W. Decontamination of vegetables sprayed with organophosphate pesticides by organophosphorus hydrolase and carboxylesterase. Appl. Biochem. Biotechnol. 136, 233–241 (2007).

CAS  PubMed  Google Scholar 

  1. Benning, M. M., Kuo, J. M., Raushel, F. M. & Holden, H. M. Three-dimensional structure of the binuclear metal center of phosphotriesterase. Biochemistry 34, 7973–7978 (1995).

CAS  PubMed  Google Scholar 

  1. Roodveldt, C. & Tawfik, D. S. Directed evolution of phosphotriesterase from Pseudomonas diminuta for heterologous expression in Escherichia coli results in stabilization of the metal-free state. Protein Eng. Des. Sel. 18, 51–58 (2005).

CAS  PubMed  Google Scholar 

  1. McLoughlin, S. Y., Jackson, C., Liu, J. W. & Ollis, D. Increased expression of a bacterial phosphotriesterase in Escherichia coli through directed evolution. Protein Expr. Purif. 41, 433–440 (2005).

CAS  PubMed  Google Scholar 

  1. Caldwell, S. R., Newcomb, J. R., Schlecht, K. A. & Raushel, F. M. Limits of diffusion in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta. Biochemistry 30, 7438–7444 (1991).

CAS  PubMed  Google Scholar 

  1. Hong, S. B. & Raushel, F. M. Metal−substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase. Biochemistry 35, 10904–10912 (1996).

CAS  PubMed  Google Scholar 

  1. Naqvi, T. et al. A 5,000-fold increase in the specificity of a bacterial phosphotriesterase for malathion through combinatorial active site mutagenesis. PLoS ONE 9, e94177 (2014).

ADS  PubMed  PubMed Central  Google Scholar 

  1. Benning, M. M., Kuo, J. M., Raushel, F. M. & Holden, H. M. Three-dimensional structure of phosphotriesterase: an enzyme capable of detoxifying organophosphate nerve agents. Biochemistry 33, 15001–15007 (1994).

CAS  PubMed  Google Scholar 

  1. Singh, B. K. Organophosphorus-degrading bacteria: ecology and industrial applications. Nat. Rev. Microbiol. 7, 156–164 (2009).

CAS  PubMed  Google Scholar 

  1. Sogorb, M. A., Vilanova, E. & Carrera, V. Future applications of phosphotriesterases in the prophylaxis and treatment of organophosporus insecticide and nerve agent poisonings. Toxicol. Lett. 151, 219–233 (2004).

CAS  PubMed  Google Scholar 

  1. Yang, C. Y. et al. Improved stability and half-life of fluorinated phosphotriesterase using rosetta. ChemBioChem 15, 1761–1764 (2014).

CAS  PubMed  Google Scholar 

  1. Rochu, D. et al. Contribution of the active-site metal cation to the catalytic activity and to the conformational stability of phosphotriesterase: temperature- and pH-dependence. Biochem. J. 380, 627–633 (2004).

CAS  PubMed  PubMed Central  Google Scholar 

  1. Chen-Goodspeed, M., Sogorb, M. A., Wu, F. Y., Hong, S. B. & Raushel, F. M. Structural determinants of the substrate and stereochemical specificity of phosphotriesterase. Biochemistry 40, 1325–1331 (2001).

CAS  PubMed  Google Scholar 

  1. Jackson, C. J. et al. Structure-based rational design of a phosphotriesterase. Appl. Environ. Microbiol. 75, 5153–5156 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

  1. Pavelka, A., Chovancova, E. & Damborsky, J. Hotspot wizard: a web server for identification of hot spots in protein engineering. Nucleic Acids Res. 37, W376–W383 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

  1. Olsen, A. J. et al. Impact of phenylalanines outside the dimer interface on phosphotriesterase stability and function. Mol. Biosyst. 13, 2092–2106 (2017).

CAS  PubMed  Google Scholar 

  1. Baker, P. J. & Montclare, J. K. Enhanced refoldability and thermoactivity of fluorinated phosphotriesterase. ChemBioChem 12, 1845–1848 (2011).

CAS  PubMed  Google Scholar 

  1. Malone, L. A., Burgess, E. P. J., Stefanovic, D. & Gatehouse, H. S. Effects of four protease inhibitors on the survival of worker bumblebees, Bombus terrestris L. Apidologie 31, 25–38 (2000).

CAS  Google Scholar 

  1. Rademacher, E., Harz, M. & Schneider, S. Effects of oxalic acid on Apis mellifera (hymenoptera: apidae). Insects 8, 84 (2017).

PubMed Central  Google Scholar 

  1. Bailey, L. The action of the proventriculus of the honeybee (Apis mellifera L.). Bee World 32, 92 (1951).

Google Scholar 

  1. Peng, Y. S. & Marston, J. M. Filtering mechanism of the honey bee proventriculus. Physiol. Entomol. 11, 433–439 (1986).

Google Scholar 

  1. Roth, R., Schoelkopf, J., Huwyler, J. & Puchkov, M. Functionalized calcium carbonate microparticles for the delivery of proteins. Eur. J. Pharm. Biopharm. 122, 96–103 (2018).

CAS  PubMed  Google Scholar 

  1. Boyjoo, Y., Pareek, V. K. & Liu, J. Synthesis of micro and nano-sized calcium carbonate particles and their applications. J. Mater. Chem. A 2, 14270–14288 (2014).

CAS  Google Scholar 

  1. Song, J., Wang, R., Liu, Z. & Zhang, H. S. Preparation and characterization of calcium carbonate microspheres and their potential application as drug carriers. Mol. Med. Rep. 17, 8403–8408 (2018).

CAS  PubMed  Google Scholar 

  1. Fu, M. F., Wang, A. H., Zhang, X. M., Dai, L. R. & Li, J. B. Direct observation of the distribution of gelatin in calcium carbonate crystals by super-resolution fluorescence microscopy. Angew. Chem. Int. Ed. 55, 908–911 (2016).

CAS  Google Scholar 

  1. Wszelaka-Rylik, M., Piotrowska, K. & Gierycz, P. Simulation, aggregation and thermal analysis of nanostructured calcite obtained in a controlled multiphase process. J. Therm. Anal. Calorim. 119, 1323–1338 (2015).

CAS  Google Scholar 

  1. Sukhorukov, G. B. et al. Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds. J. Mater. Chem. 14, 2073–2081 (2004).

CAS  Google Scholar 

  1. Griffiths, A. D. & Tawfik, D. S. Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. EMBO J. 22, 24–35 (2003).

CAS  PubMed  PubMed Central  Google Scholar 

  1. Bigley, A. N. & Raushel, F. M. Catalytic mechanisms for phosphotriesterases. Biochim. Biophys. Acta 1834, 443–453 (2013).

CAS  PubMed  Google Scholar 

  1. Chen, Y. Z., Luo, Z. G. & Lu, X. X. Construction of novel enzyme−graphene oxide catalytic interface with improved enzymatic performance and its assembly mechanism. ACS Appl. Mater. Interfaces 11, 11349–11359 (2019).

CAS  PubMed  Google Scholar 

  1. Li, P. et al. Nanosizing a metal−organic framework enzyme carrier for accelerating nerve agent hydrolysis. ACS Nano 10, 9174–9182 (2016).

CAS  PubMed  Google Scholar 

  1. Wang, Y. et al. Rolling circle transcription-amplified hierarchically structured organic−inorganic hybrid RNA flowers for enzyme immobilization. ACS Appl. Mater. Interfaces 11, 22932–22940 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

  1. Som, A. et al. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo. Nanoscale 8, 12639–12647 (2016).

ADS  CAS  PubMed  PubMed Central  Google Scholar 

  1. Katyal, P., Chu, S. & Montclare, J. K. Enhancing organophosphate hydrolase efficacy via protein engineering and immobilization strategies. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/nyas.14451 (2020).
  2. Arena, M. & Sgolastra, F. A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology 23, 324–334 (2014).

CAS  PubMed  Google Scholar 

  1. Al Naggar, Y. et al. Organophosphorus insecticides in honey, pollen and bees (Apis mellifera L.) and their potential hazard to bee colonies in Egypt. Ecotoxicol. Environ. Saf. 114, 1–8 (2015).

CAS  PubMed  Google Scholar 

  1. Martin, M. M. & Lindqvist, L. The pH dependence of fluorescein fluorescence. J. Lumin. 10, 381–390 (1975).

CAS  Google Scholar 

  1. Cochran, R. in Hayes’ Handbook of Pesticide Toxicology (ed. Krieger, R.) 337−355 (Elsevier, 2010).
  2. Gradish, A. E. et al. Comparison of pesticide exposure in honey bees (hymenoptera: apidae) and bumble bees (hymenoptera: apidae): implications for risk assessments. Environ. Entomol. 48, 12–21 (2019).

PubMed  Google Scholar 

  1. Peng, Y. S., Nasr, M. E. & Marston, J. M. Release of alfalfa, Medicago sativa, pollen cytoplasm in the gut of the honey bee, Apis mellifera (hymenoptera: apidae). Ann. Entomol. Soc. Am. 79, 804–807 (1986).

Google Scholar 

  1. Kroon, G., Van Praagh, J. & Velthuis, H. Osmotic shock as a prerequisite to pollen digestion in the alimentary tract of the worker honeybee. J. Apic. Res. 13, 177–181 (1974).

Google Scholar 

  1. Chaganti, L. K., Venkatakrishnan, N. & Bose, K. An efficient method for FITC labelling of proteins using tandem affinity purification. Biosci. Rep. 38, BSR20181764 (2018).

PubMed  PubMed Central  Google Scholar 

  1. Ellman, G. L., Courtney, K. D., Andres, V. & Featherstone, R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–95 (1961).

CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This material is based on work that are partially supported by the National Institute of Food and Agriculture, US Department of Agriculture, Hatch under 2017-18-107, Counter ACT Program of the National Institute of Health under Award Number R21-NS10383-01 and the National Science Foundation under Award Number IIP-1918981. This work made use of the Cornell Center for Materials Research Shared Facilities which are supported through the NSF MRSEC programme (DMR-1719875).

Author information

Affiliations

  1. Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA

Jing Chen, James Webb, Kaavian Shariati & Minglin Ma

  1. Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA

Shengbo Guo & Jin-Kim Montclare

  1. Department of Entomology, Cornell University, Ithaca, NY, USA

Scott McArt

Contributions

J.C. and M.M. conceived the study. J.C. and J.W. designed and conducted the experiments. S.G. and J.-K.M. provided the E. coli strain. K.S. drew the schemes. J.C., J.W., J.-K.M., S.M. and M.M. reviewed and interpreted the results. J.C, J.W. and M.M. wrote the manuscript, with input from all authors. All authors reviewed and commented on the manuscript.

Corresponding author

Correspondence to Minglin Ma.

Ethics declarations

Competing interests

The technology described in this paper is being licensed to Beemmunity Inc., a start-up company co-founded by J.W. M.M. and J.C. are scientific advisors and shareholders of Beemmunity Inc.

Additional information

Peer review information Nature Food thanks Liangfang Zhang, Scott Walper and Scott Medina for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

                                               *  *  *